找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

只需一步,快速开始

查看: 56|回复: 0

模拟学习方法:机器学习自动化的一种方法

[复制链接]

2733

主题

0

回帖

5466

积分

管理员

积分
5466
发表于 2024-8-30 11:50:52 | 显示全部楼层 |阅读模式 IP归属地:亚太地区
作为人工智能的基础技术,现有的机器学习(ML)方法往往依赖于大量的人工干预和手动预设,例如手动收集、选择和注释数据,手动构建深度神经网络的基本架构,确定优化算法的算法类型及其超参数等。这些限制阻碍了ML有效处理现实世界中复杂数据和多任务环境的能力。
为了解决当前机器学习中存在的这些挑战,西安交通大学的研究团队开发了一种名为模拟学习方法 (SLeM) 的新方法。SLeM 的核心概念是模拟和提取传统上由人类设定的机器学习学习方法,将其转化为自动化的学习过程。本质上,SLeM 框架代表了一种 ML for ML 范式,其中使用 ML 工具来设计和优化 ML 的基本组件。
该团队基于SLeM框架开发了一系列ML自动化算法,证明了其在增强现有ML方法的自适应学习能力方面的有效性。
“最近,已经提出了许多 AutoML 方法来实现 ML 自动化。然而,大多数现有的 AutoML 方法本质上都是启发式的,因此很难建立坚实的理论基础。相比之下,SLeM 框架为 ML 自动化提供了统一的数学公式,并为SLeM 的任务转移泛化能力提供了理论见解,”本文的主要作者、中国科学院院士徐宗本教授说。
高级大型语言模型 (LLM) 的开发已成为人工智能的基石,大大扩展了解决各种应用和任务的能力。然而,机器学习社区尚未充分解决 LLM 出色的任务泛化能力的底层理论证据。新颖的 SLeM 方法为推进对大型语言模型 (LLM) 中任务泛化能力的研究和理解提供了一个有前途的视角和工具。
更多信息: Zongben Xu 等人,模拟学习方法 (SLeM):一种机器学习自动化方法,国家科学评论(2024)。DOI :10.1093/nsr/nwae277

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|NewCET |网站地图

GMT+8, 2024-11-16 21:10 , Processed in 0.024603 second(s), 21 queries .

Powered by NewCET 1.0

Copyright © 2012-2024, NewCET.

快速回复 返回顶部 返回列表