找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

只需一步,快速开始

查看: 67|回复: 0

神经网络学习使用 Minecraft 构建地图

[复制链接]

2883

主题

0

回帖

5766

积分

管理员

积分
5766
发表于 2024-7-22 10:50:31 | 显示全部楼层 |阅读模式 IP归属地:亚太地区
  想象一下,你身处一个陌生的城镇中心。即使你最初对周围环境并不熟悉,你也可以探索周围环境,并最终在脑海中绘制出一幅环境地图——建筑物、街道、标志等相互之间的关系。大脑构建空间地图的能力是人类更高级认知类型的基础:例如,有理论认为语言被编码在大脑中类似地图的结构中。
  尽管尖端人工智能和神经网络能够做到一切,但它们无法凭空构建地图。
  “人们有一种感觉,即使是最先进的人工智能模型也还不是真正的智能,”计算生物学助理教授兼 Heritage 医学研究所研究员 Matt Thomson 说道。“它们不能像我们一样解决问题;它们无法证明未经证实的数学结果或产生新的想法。”
  “我们认为这是因为它们无法在概念空间中导航;解决复杂问题就像在概念空间中移动,就像导航一样。人工智能更像是死记硬背——你给它一个输入,它会给你一个回应。但它无法综合不同的想法。”
  汤姆森实验室的一篇新论文发现,神经网络可以通过一种称为预测编码的算法来构建空间地图。这篇论文于 7 月 18 日发表在《自然机器智能》杂志上。
  在研究生詹姆斯·戈内特的带领下,两人在 Minecraft 游戏中构建了环境,融合了树木、河流和洞穴等复杂元素。他们录制了玩家随机穿越该区域的视频,并使用该视频训练配备了预测编码算法的神经网络。
  他们发现神经网络能够学习 Minecraft 世界中的物体如何相互组织,并且能够“预测”在空间中移动时会出现什么样的环境。
  更重要的是,该团队“打开”了神经网络(编码相当于“检查引擎盖下”),发现各种对象的表示在空间上是相对于彼此存储的 - 换句话说,他们看到了存储在神经网络中的 Minecraft 环境的地图。
  神经网络可以导航人类设计师提供的地图,例如使用 GPS 的自动驾驶汽车,但这是神经网络首次被证明可以创建自己的地图。这种空间存储和组织信息的能力最终可以帮助神经网络变得“更聪明”,使它们能够像人类一样解决真正复杂的问题。
  Gornet 是加州理工学院计算与神经系统 (CNS) 系的一名学生,该系涵盖神经科学、机器学习、数学、统计学和生物学。
  “CNS 项目确实为詹姆斯提供了一个独特的工作平台,这是在其他地方不可能实现的,”汤姆森说。“我们采用生物启发式机器学习方法,使我们能够在人工神经网络中逆向工程大脑的特性,我们希望反过来了解大脑。在加州理工学院,我们有一个非常欢迎这类工作的社区。”

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|NewCET |网站地图

GMT+8, 2024-11-23 03:33 , Processed in 0.025530 second(s), 20 queries .

Powered by NewCET 1.0

Copyright © 2012-2024, NewCET.

快速回复 返回顶部 返回列表